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The effect of grid irregularity on the accuracy of algorithms for one-dimensional unsteady 
flow is investigated. It is shown how standard second order accurate algorithms for equally 
spaced grids may be extended to act as first order accurate algorithms on an irregular grid. 
The loss of accuracy on irregular grids is found to cause a significant reduction in the quality 
of the results. To obtain solutions comparable in quality with second order accurate 
algorithms on equally spaced grids, a class of second order accurate algorithms is derived, 
which are conservative and compatible on randomly spaced grids. They are shown to give 
solutions to the equations similar in quality to those obtainable on equally spaced grids. 
c 1987 Academic Press, Inc. 
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1. INTRODUCTION 

In the computation of finite difference solutions to the Euler equations for 
engineering applications, it is important that the grids are easily produced. There 
has been little systematic investigation of the effect of irregularity in the grid spacing 
on the accuracy of the solution [l, 21, although recently [14-161 the problem has 
been receiving more attention. In practice the grids are made as smooth as possible, 
a process which is time consuming for all but the simplest test problems. One 
technique, which has been applied to keep the grid smooth, is to superimpose or 
embed patches of a liner grid within the main grid. This technique, however, 
introduces sudden changes in grid spacing at the boundaries of the patch, which 
usually require special handling by the algorithm if errors or reflections from this 
grid boundary are to be avoided. These sudden changes in grid spacing are a 
mainly one-dimensional problem in a direction normal to the edge of the patch. 
Indeed, as most finite difference algorithms for two and three dimensions use suc- 
cessive “time-split” application of a one-dimensional algorithm in each dimension, 
improvements in the one-dimensional algorithm to handle irregularities in the grid 
in the direction of application of the algorithm are related directly to the multi- 
dimensional problem. The object of the present investigation is to discover whether 
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EULER SOLUTIONS ON IRREGULAR GRIDS 1’r35 

results for one-dimensional flows on irregular grids can be made as good as results 
on equally spaced grids. 

The algorithms are developed using the linear wave equation as a model 
equation, i.e., 

where C is a positive constant. The Euler equations in conservation form can be 
written 

U,+F,+G,.+H==O, 2, 

where 
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l3y applying linearized eigenvector analysis and time-splitting techniques [3], the 
solution of the Euler equations can be constructed by the local superposition of 
solutions to Eq. (1). 

The algorithms for solving Eq. (1) on one-dimensional irregular grids arc built in 
a step-by-step manner, to obtain an algorithm which will represent both smooth 
and discontinuous features of the flow with high accuracy. When these algorithms 
are used to solve the Euler equations by a method based on local superposition of 
linearised solutions, an error in any one of the superimposed solutions may 
influence the others and cause a large loss of accuracy for the system. Consequently: 
considerable effort is applied here to obtaining solutions which are free from local 
oscillations caused by flow discontinuities, grid irregularities. or a combination of 
both. 

In the remainder of the Introduction we consider in more detail some of the types 
of error that can be introduced by the algorithm. Suppose we apply the standard 
first order accurate upwind algorithm to the linear wave equation (Eq. ( 1)) on a 
grid with random spacing as shown in Fig. 1. The algorithm can be written (for the 
case C>O) as 

Cl’= CT,-CAt 
u,- U&, 
xj-xip,’ 

(4) 

where U, is the value of U at X= X, at time t, and U’ is she value of U; at time 
f+ At. The application of this algorithm to compute a flow on a random grid gives 
the results shown in Fig. 4(a), where the grid is indicated at the top of the figure. 
The initial data for the computation is the I’ data shown in Fig. 5(a). The exact 
solution of Eq. (I) for this data is shown in Fig. 5(b), where the Vcan be seen to be 
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propagating to the right at velocity C without changing shape. When we compare 
the solution in Fig. 4(a) with the exact solution, we see that the amplitude of the V 
has been greatly reduced and the solution is locally ragged. 

A second drawback to the upwind algorithm of Eq. (4) on an irregular grid, is 
that it does not conserve the total amount of the flow variable U. A conservative 
algorithm would ensure that the area of the l/in Fig. 4(a) remainded constant with 
time. Perhaps more importantly, it would also have ensured that any discontinuities 
in the solution would propagate at the correct rate for their strength. To determine 
the condition for conservation on an irregular grid we need to estimate the total 
amount of U in a flow which is defined only at discrete data points. To make this 
estimate we assume that the mean volume of U between any two data points is 
equal to the average value of U at those data points, i.e., 

Dj= (u,+ ui+,j/2. (5) 

Using this definition, the change in the amount of U from a change 6Ui at Xi is 
given by bU,(X,+, -Xi- ,)/2. The same expression is obtained if we assume that 
each data point represents the average value of U over the region of space closest to 
the data point. Thus for the algorithm to be conservative we need 

c 6Ui(X,+ 1 -xi&,)-o. 
For the upwind algorithm bU, is U’- Uj from Eq. (4j, hence the algorithm is 
conservative if dX is constant. 

To make Eq. (4) conservative for an irregular grid we must replace Xi - Xi- I 
with (Xi+, - Xi-, )/2. However, this introduces an error proportional to 
(Xi+ i - X,)/(Xi - Xi_ ,) - 1 into the finite difference approximation, so that the 
algorithm is no longer even first order accurate on an irregular grid. We describe 
this condition as zero order accurate. The solution using the zero order accurate 
conservative algorithm with the same initial V data on a random grid is shown in 
Fig. 6(c) to be similar in quality to the first order accurate non-conservative 
solution shown in Fig. 4(a). 

To combine first order accuracy with conservation we need to use more data 
points. If we allow the right-hand side of Eq. (4) to influence U’-’ as well as U’, we 
can obtain a first order accurate conservative algorithm. However, there is then a 
tendency for “wiggles” to appear in the solution in a similar way to those which 
typically appear in second order accurate algorithms on equally spaced grids. An 
example is shown in Fig. 4(b) for a Lax-Wendroff-type algorithm, which is conser- 
vative and first order accurate on a random grid. To remove the wiggles, a similar 
technique is used to that for the second order accurate algorithms on equally 
spaced grids, by introducing the Total Variation Decreasing (TVD) criterion 
[4-S]. The result is shown in Fig. 7(c). To improve the accuracy of the solution 
further, we need an additional point in the algorithm and a more elaborate process 
to ensure the TVD criterion is satisfied. This has been implemented and leads to the 
results of Fig. 8. 



EULERSOLUTIONSON IRREGULARGRIDS 197 

The various steps in the development of the algorithms mentioned above and 
their application to the linear wave equation, Burgers equation and the Euler 
equations is considered in Sections 2-5. In Section 2 we give formal definitions of 
accuracy and exhibit the constraints which these place upon an algorithm in con- 
servation form. These constraints take the form of recurrence relations which relate 
the properties of the algorithms in neighbouring intervals. In Section 3 we 
investigate the local stability of these algorithms and find ways of solving the 
recurrence relations so that the stability criteria are always met. In Section 4 we 
show how to modify the algorithms so as to avoid non.-physical over-shoots in the 
solution. The results for the test problems are to be found in Section 5. 

2. CONSERVATION AND ACCURACY 

2.1. Dtlfiritions and Notation 

Consider a set of unequally spaced grid points along the X axis as shown in 
Fig. 1, where the intervals between grid points (AX, = Xi_ i -Xi) may vary with i 
The initial value of the data function U at t = 0 is U(Xj) = Vi. The analytic solution 
to the linear wave equation (Eq. (1) j for U after a time interval A; is then 

L;‘=U(X,-CAi)= U(X,-v,AX,), :s) 

where ?>I ( = C At/AX,) is the local Courant number. To obtain a definition of first 
and second order accurate algorithms, we expand this solution in a Taylor series 
about X,; that is, 

C”= c’i-\‘iAxiu~+~~‘~(Ax,j’ ul’e Q(Ax,)3. (81 

Then the change at Xi in time At is given by 

SU,= U- Ui= -\I; AXiU; + $;(dXi) Ul’+ O(AX;,‘. (9) 

First order accurate algorithms are defined to be those which satisfy this equation 
to 0(3X)’ and second order accurate algorithms to Q(AX’)3. 

‘i-1 x1 x ,*I 

FIG. 1. An irregularly spaced grid of points. 
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We also introduce the notion of first and second order exact algorithms. These 
are algorithms for which the solution is exact for linear and quadratic data, respec- 
tively. A first order exact algorithm differs from a first order accurate algorithm in 
that the 4X term on the right-hand side of Eq. (9) is represented exactly for an 
exact algorithm but may differ from it by 0(4X)’ for a first order accurate 
algorithm. Note, however, that a first order exact algorithm is only first order 
accurate for general data, because the neglected third term on the right-hand side of 
Eq. (9) is 0(4X)‘. Similarly we define second order exact algorithms as the subclass 
of second order accurate algorithms which propagate quadratic data exactly. 

The algorithms we seek are not only of prescribed accuracy (or exactness), but 
must also have the property of conserving the total amount of U in the sense 
defined in the introduction. It is convenient to introduce this latter requirement by 
considering the algorithms in what is known as “increment” form [9]. We compute 
in each X interval, the quantity 

cDi= -cgnui= -v,(U;+, - U;), (10) 
I 

where Qi is interpreted as the local accumulation of the conserved variable U in the 
cell X,<X<X,+, in time 4t. For values of At of 0(4X)* this accumulation in the 
cell may be represented by equal changes to Ui at each end of the cell; a process 
which for an equally spaced grid gives a central difference algorithm. For more 
practical values of 4t (i.e., 0(4X)), to maintain accuracy and stability it is 
necessary to introduce some upwind bias by distributing the larger part of the 
accumulation to the downwind end of the cell. Indeed to obtain second order 
accuracy on irregular grids, we see later that Gi needs to be distributed not only to 
the cell endpoints Xi and Xi+, but also to one other point, taken most naturally to 
be the next downwind point. For C positive (i.e., flow from left to right in Fig. 1) 
this point is Xi+ 2 and the analysis which follows is based on this assumption. For C 
negative the equivalent point is Xi_, and a corresponding algorithm can be 
deduced from simple considerations of symmetry. 

We shall assume that Qi is distributed to the points Xi, Xi+ ,, Xi+ 2 with weights 
cli, pi, and yi, respectively, such that 

cci+p,+y,= 1. (11) 

Then the changes in Ui, Ui + i, and Ui + z which will conserve the total amount of U 
are given by 

cYiQi 
2A& 

AX;+AXi-1 

Bi@i 

2AX, 

AXi+,+4Xi 

(12) 

(13) 
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and 

respectively. That is the accumulated “mass” AXi@; is distributed to the noda! 
points X,, Xj+[, and XitZ, causing a “density” change, which depends on the 
adjacent cell sizes. The total change in Uj in time At is given by adding the CY. p3 and 
7 contributions from adjacent cells, that is, 

To assess the accuracy and exactness of this algorithm, it is compared with the 
Taylor expansion in Eq. (9). To expand Eq. ( 15) in terms of AX, we assume CT can 
be represented in smooth regions of the flow by the polynomial form 

u= c K,(X- Xi)‘, j> 0. (16) 

where the K, are constants. The value of Ui in Eq. (9) is then K, and the values of 

AU are given by 

AUi= Ui+, - Ui= K, AXi+K,(AX;)‘+ O(AX)j 4171 

AUi mi= C:i-Zrjmm,=K, AXi~,-K~(AX-,)‘+O(AX)3 ik8 

AC’;..~=C:i~,-C~i~~=K,AX;~~-KK2AXi~~(2~X,~~+AXi~,)+@(AX)3. ( 19 

The first order exact condition is obtained by equating the terms O(AX) in Eqs. i9 
and (15), using (17)-(19), to give 

and for first order accuracy, this equation must be true to U(AX)‘, Similarly for the 
algorithm to be second order exact, Eq. (9) and (15) must be matched to OjAXj”. 
Thus a second order exact algorithm has the additional constraint on r, $9, and i: 
given by 

ai+I(AX,+,)‘-~;(AXi)‘-i’i~l AX,p,(2AX;+AXi_,) 

= - ;C At(A.;Y,+, + AX,). (21) 

For second order accuracy Eqs. (20) and (21 f need only be true to 0(dX)3. 
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2.2. First Order Algorithms 

We have shown in 2.1 that algorithms which are conservative and first order 
exact obey the relationships of Eqs. (11) and (20). Eliminating /Ii from these 
equations we obtain 

This equation can be rearranged in “recurrence” form, i.e., 

ai+ 1 AXi+ I -‘/j Axi- $AX;+, =a,Ax,-y;&1 Axi-,-glxi, (23) 

whence 

~ciAX;=C,+~Axj+l’i~,AXi~~, (24) 

where C, is a constant. This constant has the dimensions of length and can either 
be defined using a reference length AX, or by using the length Cdt. We use 
whichever is convenient to obtain particular properties for the algorithm. It should 
be noted that C, only needs to be strictly constant for conservative first order exact 
algorithms. For conservative first order accurate algorithms C, may vary by 
O(dX)2 along the grid. 

As an example consider first order irregular grid algorithms with the property 
that the algorithm is second order exact on an equally spaced grid. The conditions 
relating a, j3, and y for conservative, second order exact algorithms on an equally 
spaced grid can be obtained from (11) or (20), and (21) with AX constant as 

X=+(1-1*)+1/’ (25j 

P=f(l +v)-21’= 1 -U-1’. (26) 

In this form, 1’ can be considered as a parameter describing the algorithm. For 
example, the Lax-Wendroff, Fromm and third order accurate algorithm are 
described by y = 0, (v - 1)/4, and (v’ - 1)/6, respectively. 

For Eq. (24) to reduce to Eq. (25) when AX is constant, the value of C, needs to 
be -$CAt. Substituting this value of C, in Eq. (24) we obtain 

Note also that Eq. (11) reduces to Eq. (26) for equally spaced grids, thus an? 
algorithm which is second order exact for equally spaced grids can be used us a first 
order exact algorithm for irregular grids, if Eqs. (25) and (26) are interpreted in the 
form of Eqs. (27) and (11). A similar result extends second order accurate 
algorithms to provide first order accurate algorithms for irregular grids. 
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As an example, setting yi = 0 in Eqs. ( 11) and (27) gives the Lax-Wendroff 
algorithm for an irregular grid, i.e., 

Ui=;(l-vi) [I%) 

pi = +( 1 + \I;). (19j 

This algorithm is first order exact on an irregular grid, second order exact on an 
equally spaced grid and on a sufficiently smooth non-uniform grid it can be second 
order accurate. This algorithm has been considered previously in reference [IOj. 
together with the conditions required for stability and “monotonicity.” These con- 
ditions are investigated for more general algorithms in later sections. 

2.3. Second Order .4lgorithms 

For an algorithm to be second order exact in X. Eq. (21) must be satisfied in 
addition to Eqs. (11) and (20) with relaxation to OfAX) in these inequalities for 
second order accuracy. Substituting for OL~+ ; and ,B! in Eq, (21j from Eqs. (l!) and 
(24) we obtain 

This equation can be written in “recurrence” form, i.e., 

yi dXj(3Xj+, + AX;) +$4X,+ 1(2C, + c dr + dYi+ 1) 

= i’;-, AXi& ,(dX,&, + AX,) + @Xj(2C, + c At + AX,) 

= tc2, :2: f ,4’! 

where Cz is a second constant (with dimensions of length squared) which needs to 
be defined. From Eqs. (11 j. (24), and (31) R;. fli. and ;:! can now be written as 

Cl - 2c, dX;+ 1 -(dx,+,)‘(l+v,-,! 
jji = 

23X,(4Xj+ AX,, , ) 
t.32; 

cci=~+C,~d;Yj+~i~,(dXi_!:‘3X;‘) (33j 

pi= 1 --xi-l’j, (34) 

representing a class of second order exact aigorithms which depend on the 
definition of C, and Cz. If second order accuracy rather than second order 
exactness is required, then, as for the first order case, small variations in C, and C, 
to 0(&Y)* and O(LIX)~, respectively, are permitted along the grid. 

The values of C, and C, in Eq. (.32) can be chosen to give the algorithm par- 
ticular properties. We investigate definitions of C, and Cz which further increase the 
accuracy of the algorithm and then in the next section show how this algorithm Is 
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unsatisfactory because it can produce local instabilities. We have already seen how 
C, can be defined in terms of the lengths AX, or C At. Since the constant Cz has 
dimensions of length squared, it can be defined using any linear combination of the 
terms (AX,)*, C At AX,, and (C At)‘. 

For an algorithm to be third order accurate for the special case of an equally 
spaced grid with spacing AX,, the values of C, and C, must be such that Eq. (32) 
reduces to the third order form for y when AXi s AX,, i.e., 

J,;=(v;-1)/6. (35) 

Particular definitions of C, and C, which achieve this reduction are 

C,= -+CAt (36) 

C, = ((AX,)* + 2(C At)*)/3. (37) 

Other choices of C, and C, can be made which also cause Eq. (32) to reduce to 
Eq. (35). The expressions are more complicated, but some properties such as 
stability may be improved. Further investigation in this area might be rewarding. 

The values of C, and C, of Eqs. (36) and (37) give an algorithm which is third 
order accurate for AXi 3 AX,. In order to approach third order accuracy on a non- 
uniform grid, it would be desirable to vary AX, from point to point in some way. 
However, any change in AX, affects the value of C2 defined in Eq. (37), and to 
retain second order accuracy the value of C2 must not vary more rapidly along the 
grid than O(AX)‘, This restricts the type of average that can be used for AX,. 

A practical difficulty associated with the variation of C2 and similar adaptive 
strategies, is that it is diffkult to ensure that the algorithm will not become unstable 
for some particular combination of data and grid spacing. This can introduce local 
oscillations in the flow and eventually upset the accuracy of the whole solution. We 
proceed therefore, to examine the stability of algorithms in an attempt to construct 
algorithms which are more robust. 

3. STABILITY 

The difficulty of analysing the stability of a linear equation on an irregular grid is 
similar to that of analysing a non-linear equation on an equally spaced grid, and to 
reduce this difliculty we adopt a similar policy. That is, we confine ourselves to 
rejecting algorithms which are unstable for local regions of equally spaced grid. 
This necessary condition for stability provides a restriction on the relationship 
between yi and the grid pitch AX;/AX,. Although we cannot prove that this con- 
dition is sufficient for stability on irregular grids, our experience has been that 
algorithms designed with this restriction are satisfactory. 

On equally spaced grids the stability of three parameter algorithms has been 



EULER SOLUTIONS ON IRREGULAR GRIDS 203 

investigated previously [ 1 I]. The stable regions found in (y, 11) space are shown in 
Fig. 2. Several well-known algorithms are plotted on Fig. 2(a) and we can see, for 
example, that the Lax--Wendroff algorithm (y = 0) is stable for - 1 d IF d I, and the 
upwind algorithm (II= +(v - I)) is stable for 0 < \! < 2. 

From m is = ‘/II9 - 11 

FIG. 2(a) Stable region (shaded) for algorithms on equaily spaced grids. (b) Stability of second 
order algorithms which are “scale invariant” on grids of different pitch. 
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FIG. 3. Effect of grid pitch on the algorithm which is third order accurate when dx’, = dx,. 

For algorithms which are second order accurate on irregular grids, the ability to 
choose 1/’ is restricted by Eq. (32). We have already seen how a second order 
accurate algorithm can be made third order accurate on an equally spaced grid by 
choosing C, and C, such that 1~~ is given by 

y;= (2+3(4xR/4xi)~+ l)j12. (38) 

For any given value of grid scaling ratio (4X,/4X,), we can plot Eq. (38) on Fig. 2 
and establish its stability range. This stability range, as a function of scaling ratio, is 
shown in Fig. 3. The variation in the range of the stability due to the j4XR/4Xi) 
term in Eq. (38) makes it difficult to ensure that local instabilities will not occur on 
a random grid. We remove the dependence of the stability on the grid scaling ratio 
by defining C, and C, such that X, does not appear, that is, 

C,=$(K,-l)Cdt, c, = K2(C 4l)', (39) 

where K, and K2 are constants. Substituting these values in Eq. (32) gives 

Yi= 

Kzvf 4x -K,vi4Xi4Xi+ I -(4X',+,)' 
24Xi(4Xi+4dx,+,) . (40) 
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We analyse the stability of these algorithms on equally spaced grids, when Eq. (40) 
has the form 

= $( K, v2 - K, \’ - 1 )~ (41) 

Equation (41) can be plotted as a single curve on Fig. 2 for any particular choice of 
K, and K,. For example, choosing K, = - 1 and K, = 0 gives a second order 
accurate algorithm which reduces to Fromm’s algorithm on any equally spaced 
grid. This aigorithm and those for other values of K, and K2 are shown on 
Fig. 2(b). Very extensive numerical studies would be needed to establish the proper- 
ties of all these algorithms. We concentrate on an algorithm which has an increased 
stability range, whilst choosing 1’ to be zero at v = 1 to maintain maximum 
accuracy. The algorithm is given by K, = 0 and K, = 1 which has coefficients 

vf - (AXi, iidxi)’ 
yi= 2(1 +Llxj+l,/Lilxi) 

1 -vi 
Z-E------ I- 

i 
l+ri ’ 

2 \ 
1 1 SdX,+,!‘dX;/ 

i43) 

pi= 1 -#Y-1’,. (44) 

This algorithm is shown in Fig. 2(b) to be stable for 0 6 Y d 1.6, and in Section 5 we 
will show numerical results from this algorithm when applied to the Euler 
equations. Other algorithms which have not been so thoroughly tested could also 
be of interest. For example, algorithms which are stable for O< II< 2 can be 
obtained by putting K2 = 3 + 4K, with f < -K, < 2. One such algorithm with K, = 0 
and K, = -+ is the straight line from Y = 0, :’ = -$ to \I = 2, 7 = 4. Another s-~ch 
algorithm, which is close to Fromm’s algorithm for small 11, is given by K, = -I 
and K,=a. 

4. CO~~PATIRILITY 

The accuracy and stability investigations were based on the assumption that the 
solution remains smooth and differentiable. However, hyperbolic differential 
equations permit discontinuous solutions, and the development and propagation of 
these discontinuities may be an important feature of the solution. If the solution is 
advanced using algorithms based on smooth-data concepts, the discontinuities may 
emit spurious oscillations or “wiggles” into the surrounding flow (see Fig. 4). X way 
to remove these errors is to modify the algorithm according to the data to be 
processed, such that discontinuous data prompt the use of an algorithm more 
suited to discontinuities. That is, we make the algorithm compatible with the data. 

For equally spaced grids considerable effort has been applied to this problem, 
and even for this simple case there are many matters of detail which are still to be 
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settled. The most successful methods depend upon monitoring the smoothness of 
the data. Van Leer [4] first suggested the use of the ratio of successive gradients in 
the data (i.e., AUJAX and AUi-,/AX) to assess when the algorithm should be 
modified. Later Roe [12] adopted this same ratio as a basis for the method of 
which the present work is a generalisation. A straightforward extension of Roe’s 
algorithm to irregular grids is to set 1~ = 0, cli = 4( 1 - 1~~) and pi= +( 1 + vi). This 
algorithm, as we have already seen, is first order exact on irregular grids. However, 
for nonlinear data, oscillations will appear close to shock waves. We can suppress 
these oscillations by a simple application of the compatibility technique, which con- 
sists of reducing the value of CI whilst retaining fi = 1 - CI. This straightforward 
approach however, cannot lead to an algorithm which is second order accurate on 
irregular grids. To achieve second order accuracy we shall need y # 0 and it will be 
necessary for compatibility to include mechanisms which reduce the value of 1’ as 
well as M. 

To prevent new oscillations forming in the flow under the action of the 
algorithm, it is sufficient to require that monotonic data remain monotonic. One 
way of ensuring this is to insist that the value of the data at any point after the 
application of the algorithm lies between its original value and that of its upstream 
neighbour. That is, with u’ the updated value of Ui, we require 

(vi- U,)(ui- Ui-[)<O. (45 1 

This requirement is stronger than that necessary to maintain monotonicity, but it is 
easier to analyse than trying to use a weaker restriction based on the updated value 
of the upstream point. Note that the inequality (45) also ensures that the Total 
Variation (TV) of the data, defined by 

TV=x /u,+I- u;l 

continuously diminishes (see Harten [6]). This Total Variation Diminishing 
(TVD) property has the advantage, when dealing with non-linear equations, that 
shock waves can weaken. However, schemes which enforce TVD also tend to 
attenuate extreme values of the solution. If the data contains a sharp peak which 
should not be attenuated, it is probably necessary to use a better criterion than 
(45) but this is not a problem we are concerned with in this work. 

Consider first the upwind algorithm with an (a, p, y) weighting given by (0, 1, 0), 
that is, all the change in the cell in time At is distributed to the upwind point of the 
cell. It is clear that this algorithm will satisfy the compatibility condition (45) for 
equally spaced grids when 0 < 1’ < 1 and similarly for irregular grids when 0 < vi d 1. 
Then an algorithm (a,, pi, vi) which violates the compatibility condition can always 
be changed to a compatible algorithm by reducing ai and yi sufficiently. However, 
the upwind algorithm is only first order accurate for irregular grids. Hence, for 
algorithms of higher order accuracy, the imposition of the compatibility constraint 
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Propagation velocity c - 

time Intervals1 

(b) 

FIG. 4. The propagation of initial “b”’ data on a random grid for the linear wave 
equation. (a) Upwind algorithm (Eq. (4)), (b) Lax-Wendroff (list order, conservative), 

must be expected to cause a loss of accuracy. Thus it is essential only to modify the 
a, and y, to satisfy compatibility where it is necessary. 

To simplify the problem, we initially consider the compatibility restriction on CZ; 
for a fixed value of 11~ = 0. We suppose that the compatibility condition requires that 
#yi is reduced by some factor 2.i where 0 d Ai 6 1. Then the total change in U;+ I in 
time At is given, as for Eq. ( 15), by 

where the final term in the numerator comes from the compatibility condition 
applied at Xi- I. For ease of analysis, we restrict ourselves first to monotonic 
increasing data. The inequalities to be satisfied are then from Eq. (45), 

Substituting for U- Ui ( =bUj) from Eq. (46) we obtain 
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~~oljAUj+~j~~AUj_~+(l-aj-~)“~~~AUi~~ 

~AUi_,(AXj+AXi~,)j2CAt. (49) 

These inequalities can be further simplified by using Eq. (11) with 11~ = 0 to give 

(~j-~~j-,-l)AUi-,,</li”jAU,d~j-~G(i-~AUj~~ 

+~(l/v;+l/r;~,-2)4u;_l. (50) 

For vi, vi-, d 1 the left-hand inequality is satisfied for all 0 < Ai< 1, and the largest 
value of ;ii which satisfies the right-hand inequality for all Ai- 1 in the range (0, 1) is 

/l;=minimum(l, (l/v,+ l/v,_,-2)dCii_,/2aidUj). (W 

For monotonic decreasing data the same result is obtained. 
For data which is not monotonic (i.e., dUi AU;-, < 0) we obtain by a similar 

process that the largest allowable value of li is 

Li= minimum{ 1, -AUjp ,/cci AUi). (52) 

Equations (51) and (52) are used to ensure compatibility when y = 0, as, for exam- 
ple, for the irregular grid extension of Roe’s algorithm discussed earlier. 

Compatibility conditions involving three point weightings (ai, pi, yi) are more 
complicated because the contributions to each point involve four compatibility fac- 
tors: Ai, Ai- 1 for the c&s and the corresponding factors p, ~, , ,u- 2 for the 7’s. The 
total change at the point Xi is, as for Eq. (15), 

Again we consider first monotonic increasing data. The compatibility inequality 
(45) and Eq. (53) then give 

Od~i~z~r-rAUi~z+(l-~i-,)cci-, AU;-I+B;~r AlIp, 

+(l-/~-~)y-~ AUi~,+/Z,a,AUidAU;-,(AXi+AXi_,)/2CAt. (54) 

To extract simple results from this complicated condition, it is necessary to make 
some simplifying assumptions. If 11; d 1 we find in most cases that cli is positive and 
yi is negative. A typical example is the second order algorithm of Eqs. (42)-(44). 
For this algorithm 
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and 

1,; - (4Xj, Ij4X;)2 C%'-(4X,+,)' 

yi= 2(1 +4X,+,/4Xi) =23X,(4Xi+4Xi+,) 

60 for \li+ I d 1. (56) 

and the assumption is justified, for this example. With 7, negative and /-1[ and 4Cli 
positive, the righthand inequality of (54) is satisfied if 

This inequality has already appeared as Eq. (49) for compatibility, hence if we firs1 
apply compatibility tests to z using Eqs. (51) and (52). the critical inequality for 
compatibility will be the left-hand inequality of (54). 

With ai and 4U, positive and 0 d Ii< 1. the left hand inequality of (54; is 
satisfied if 

.P- _ ?i’j-7 4CT~_~+/l~~~4~i,-~+(l-~L,~~)j’i~~~~’;~~30 

which leads, after some argument, to 

(1-cc,+i)4U,+,,‘4L~,3 -,U,;,,. (58) 

Hence we have for :/! a relationship similar to Eq. (51 ) for CC that is, the largest value 
CL, can take is 

. . (59) 

The same result holds for monotonic decreasing data. At a maximum or a 
minimum in the data (i.e., 4Ui4UjP, < 0) the analysis is complicated. and to 
enhance the stability we put 

,!A, = yi = 0. 

In view of the assumptions made in analysing the compatibility for ;‘, it was con- 
sidered expedient to limit 7 more strongly. We recali that the algorithm (0, 1. 01 is 
compatible with all data, and we therefore restrict ;‘; by a factor at least equal to <ii. 
The compatibility procedure can thus be summarized to first reducing CX! as 
necessary to conform to Eqs. (51) and (52 j, reducing y, by the same factor, then 
further reducing yi to conform to Eq. (59) or put :‘; = 0 if 4 Uj + L 14 d’, < 0. The value 
to pi is then calculated from Eq. (11) to preserve conservation. This compatibility 
process is shown to be highly effective in the results of the next section. The com- 
plete algorithm is summarized in Appendix A. 
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5. TEST PROBLEMS FOR THE ALGORITHMS 

The algorithms are tested on the linear wave equation, Burgers equation, and the 
one-dimensional Euler equation using initial data for which the exact solution is 
known. These equations form a set progressively increasing in complication from 
the linear wave equation 

u,+ cu,=o, (60) 

where C is a constant, through the non-linear Burgers equation 

u,s uu,=o, (61) 

FIG. 5. Exact solutions and calculation grids for the linear wave equation and Burgers equation. 
(a) starting data. (b) analytic solution linear wave equation, (c) analytic solution Burgers equation. 
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to the non-linear system of Euler equations 

U,+F,=O, (62j 

where U = (p, pu, pu, pe)' and F = (pu, pu" + p, pm, pu( p + pe))'. The examples 
give the results shown in Figs. 5-14 in which increasing complexity in the equations 
is combined with increasing irregularity in the grid, for algorithms which are zero, 
first, and second order accurate. By comparing the results with an exact solution, 
we are able to identify the errors and discuss their reduction. 

The initial data used for both the linear wave equation and Burgers equation is 
in the form of a “V” as shown in Fig. 5(a), and the exact solutions for the linear 
wave equation and Burgers equation are shown in Figs. 5(b) and (c j, respectively, 
for t > 0. We see that the exact solution for the linear wave equation in Fig 5(b) 
remains identical to the solution at t = 0, except that the solution has been trans- 
ported a distance Cc in the A’ direction. The time interval at which the solution is 
shown is 2.25dX,iC, where AX is the distance between the tick marks in Fig. 5(a). 
Using Burgers equation, the same initial V data are transported in a similar man- 
ner, but become deformed in the process (Fig. 5(c)). The right-hand (expansionj 
side of the V gets progressively less steep whilst the left-hand (compression) side 
steepens until it becomes a discontinuity. This discontinuity continues to propagate 
to the right, but it slowly weakens as it interacts with the expansion side of the P’. 
The locus of the minimum value at the base of the discontinuity is shown by the 
dotted line. It is important that the compatibility conditions of the algorithm do 
not inhibit the change in the calculated value of this minimum, 

The vertical lines above the solution denote the X position of the left-hand 
extremity of the V after each time interval. Note that even though the solution is 
shown at equal time intervals (dr = 2.25X/U,), the distance moved by the left-hand 
edge of the disturbance is not constant for Burgers equation. 

The algorithms are used to compute the test flows discussed above on grids of 
progressively increasing irregularity. The grid spacings used are indicated by the 
tick marks on the initial V data in Figs. 5(a)-(c) and subsequently along the line 
U= I in Figs. 6-11. Figure 5(a) shows an equally spaced grid with a constant intor- 
val AX and 10 intervals spanning the I’. Figure 5(b) shows the same grid with a 
region of double density points embedded in the equaliy spaced grid, and Fig. 5(c) 
shows a grid with intervals which vary randomly in size between 4 and I$ times 
those of the equally spaced grid. These grids are shown in the same order m 
Figs. 611. These six figures show the results from applying zero, first and second 
order accurate algorithms for propagation of the I’ data, first for the linear wave 
equation, then for Burgers equation. 

The zero order accurate algorithm used has (a, /3, ;!) weightmgs of (0, 1,O). That 
is the whole of the increment generated in an interval is used to change the d: value 
at the upwind end of the interval. The algorithm is conservative which ensures that 
the area of the V remains unchanged, but on equally spaced grids (when the 
algorithm is first order accurate) the algorithm is known to attenuate the high fre- 
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ICI 

FIG. 6. Linear wave equation V test on a zero order accurate algorithm (a, p, y)= (0, 1,O). 
(a) Equally spaced grid, (b) embedded tine grid, (c) random grid. 

quency components of the solution, so we should expect the shape of the V’ to 
change. This attenuation is well shown in Fig. 6(a), where the algorithm is used to 
propagate the initial V data on the equally spaced grid with At = 0.45AX/C (i.e., 
v=O.45) with the results being shown every 5 time steps. The same value of At is 
used on the grids of Figs. 6(b) and (c), where we see that whatever the grid the 
effect of this algorithm is to attenuate the high frequency components so as to 
significantly degrade the solution. Similar results are obtained for other values of At 
less than O.SAX/C. Above this value, in the smallest intervals in the”/‘grids of 
Figs. 6(b) and (c) the CLF stability limit is exceeded and the computation process 
becomes unstable. 

The first order accurate algorithm which produces the results shown in Fig. 7, 
has (a, p, 7) weightings of (( 1 - ri)/2, (1 + vj)/2, 0) as described by Eqs. (28) and 
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FIi;. 7. Linear wave equation Y test on s first order accurite algorithm (2, fi, y) = Ii i - v, j, 2, 
(1 + i’, J,‘?. CJ). (a) Equally spaced grid, (b j embedded fine grid. (c) random grid. 

(29j, with compatibility conditions based on Eqs. (51) and (52). On an equally 
spaced grid this algorithm is the second order accurate Lax-- Wendroff algorithm. 
with a compatibility requirement obtained from Eq. (51) with vi = \I, + i This 
restricts fx to a maximum of 36U, I/~fi AL’;. The solution computed by this 
algorithm is a considerable improvement on that computed by the zero order 
accurate algorithm as can be seen by comparing Fig. 7 with Fig. 6. The attenuation 
of the point of the V is much less in Fig. 7. but there is some deterioration ie this 
aspect of the solution between the equally spaced grid of Fig. ‘7(a j and rhc random 
grid of Fig. 7(c). 

The second order accurate algorithm which produces the results shown in Fig. 8, 
has {,a, /;, ;!) weightings given by Eqs. (42)-(44), with compatibility as described in 
Section 4 using Eqs. (51), (52): and (S9). This algorithm has been constructed for 
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FIG. 8. Linear wave equation I” test on a second order accurate algorithm (CC, /I, y) from 
Eqs. (42)-(44). (a) Equally spaced grid, (b) embedded grid, (c) random grid. 

its effectiveness on irregular grids and is still only second order accurate for equally 
spaced grids. It is to be expected then, that the solution on the equally spaced grid 
of Fig. S(a) is similar in quality to the solution of Fig. 7(a). The main difference is 
that the introduction of the forward y component seems to have improved the 
leading edge of the V. Note, however, that between the equally spaced grid of 
Fig. S(a) and the random grid of Fig. S(c) there is now no deterioration in the 
representation of the point of the I’. 

The effectiveness of the compatibility procedure, which permits algorithms to 
propagate discontinuities without producing errors is shown in Figs. 9-l 1 when the 
algorithms are applied to Burgers equation. The poor performance of the zero order 
accurate algorithm is shown again by the results of Fig. 9, where the discontinuity is 
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ICI 

FIG. 9. Burgers equation L’ test on a zero order accurate algorithm fu. 8. :‘) = i0. 1.0). (a) Equally 
spaced grid. (b) embedded grid. (c) random grid. 

excessively smoothed in a similar manner to the results of Fig. 6 for the iinear 
equation. 

The solutions obtained by using the first order accurate algorithm are shown ir, 
Fig. X0 to be a considerable improvement on those of Fig. 9, with the discontinuity 
contained within at most three intervals and often occupying only the theoretica! 
minimum of two intervals. A feature of the solution on the random grid (Fig. lO(c)) 
which causes some concern, however, is the appearance of ‘-wiggles” in the expan- 
sion, particularly when the expansion gradient is steep. The effect appears to be 
associated with the non-linear nature of Burgers equation, because it is much loss 
apparent for the linear case in Fig. 7(c). This type of error may be important for 
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FIG. 10. Burgers equation If test on a first order accurate algorithm (a, p, v)= (( 1 - v,)/2, 
(1 + v,);?, 0). (a) Equally spaced grid, (b) embedded grid, (c) random grid. 

non-linear systems of equations, because errors in one characteristic wave can cause 
errors in the other waves of the system, which may not even be propagating in the 
same direction. 

The results from the second order accurate algorithm in Fig. 11, show the discon- 
tinuity is as well represented as in Fig. 10. Moreover, if we compare Fig. 11(c) with 
Fig. II(a) there is almost no observable deterioration in the solution, even though 
the results shown in Fig. 11(c) are obtained using a random grid and those of 
Fig. 1 l(a) an equally spaced grid. With this objective achieved for Burgers equation 
the final test is to calculate a solution of the Euler equations. 

When using the algorithms on a system of equations, it is more difficult to inter- 
pret the errors because of the increased complication of the problem. The test 
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FIG. Il. Burgers equation I’ test on a second order accurate algorithm (z, /1,y) from Eqs. (42)-(M). 
(a) Equally spaced grid, (b) embedded grid, (c) random grid. 

problem for the one-dimensional Euler equations is a problem suggested by 
Sod [13]. At t = 0 the gas is stationary with a discontinuity in pressure (at X= SO). 
After a time 24..5C/6.Y, where C is the speed of sound in the high pressure region, 
exact solutions for the density: velocity, and pressure are shown by the lines in 
Fig. 12, together with the internal energy p/(7 - 1 )p, which is often found to be par- 
ticularly sensitive to errors. We see that the initial discontinuity has separated into 
an expansion fan, a contact discontinuity (near X=63) and a shock wave (n’ear 
X= 76). The flow remains undisturbed for X< 33 and X> 76. For equally spaced 
grids, accurate solutions can be calculated [3, 51 using Roe’s method by resolving 
the equations into eigenvectors and applying the algorithm to each of the resulting 
characteristic waves. Here we apply the same technique, but use the three 
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algorithms developed for irregular grids. The grid spacing used is $, i. Ii. It 
(repeating), because this type of spacing tends to exhibit the errors in the soiution 
The solution on this grid using 70 time-steps is shown for the zero order accurate 
algorithm by the crosses in Fig. 12. We see how the excessive smoothing found in 
Fig. 6 and 9 for this algorithm is also apparent in the Euler solution. The solution 
for the first order accurate algorithm shown in Fig. 13 is a considerable 
improvement on that shown in Fig. 12. However, there is still inadequate represen- 
tation of the discontinuities, particularly the contact discontinuity, and a ragged- 
ness about the representaton of the expansion. Both these features are improved by 
using the second order accurate algorithm as can be seen by the solution in Fig. 14. 
The results from this algorithm (Appendix A) give results at the standard expected 
frorn a good algorithm on an equally spaced grid, in particular, they compare weil 
with those of reference [3], demonstrating that good quality solutions are 
achievable even on grids where large changes of grid spacing occur. 

6. CONCLUSIONS 

Algorithms have been developed for the solution of hyperbolic conservation laws 
in one dimension on grids with random spacing. The algorithms are constructed to 
be conservative stable and accurate up to second order in the average grid spacing. 
It is shown how standard second order accurate algorithms for an equally spaced 
grid may be interpreted as first order algorithms on an irregular grid. To obtain 
second order accuracy information from one more data point must be included. A 
technique is presented for modifying these algorithms to meet the monotonlcity 
condition. The results for test problems using the linear wave equation, Burger’s 
equation, and the Euler equation show that the results for the second order 
accurate algorithm on highly irregular grids are nearly as good as the results on an 
equally spaced grid. 

APPENDIX A: AN ALGORITHM FOR IRREGULAR GRIDS 

It is assumed that at some time r, data Ui is known at the points Xi. To evaluate 
the solution to Eq. (I) at time t + At, the data is updated by adding contributions 
originating from each interval AX,, where d.;Y, is the interval Xi-X,- I with the 
points numbered such that CX,> CX,- r. The magnitude of the contribution from 
the interval AX, is vi AU,, where vi is the Courant number C At/AX: and @C:: Is 
ui- uipi. 

The contributions from the intervals are distributed to update the adjacent data. 
That is, the contribution \jr AUi from the interval dXi is distributed as an upwmd 
contribution pjai~‘i LILT, to the point X,_ 1, a downwind contribution to the 
point 12j~i~~i AU, to the point Xi+r and the remainder as a contribution 
(1 - ~ic(i-JL~i) 11~ AU, to the point Xi. 
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The distribution coefficients C(~ and yi are given by 

1 - 1’. a.=’ l- 
( 

1 + Vi 
2 l + AXj~ l/AX, ) 

1$ - (AX,- ,/AX,)’ 
l’i= 1 +/4xi+,/dxi 

and the compatibility factors to maintain stability are positive and are given for 
monotonic data (d Ui AU,- 1 2 0) by 

and for AUiAUjp,<O by 

APPENDIX B: NOMENCLATURE 

C constant of linear wave equation (Eq. (1)) 
Cl> c2 parameters of 1st and 2nd order accurate 

e 

F, G H 

4 
K,, K2 
P 

u, u, )V 

U 

U 

x K z 

algorithms (Eqs. (24) and (31)) 
specific energy ( p/( y - 1) p + f( u2 + v2 + G)) 
vectors of the Euler equations (Eqs. (3)) 
constants of polynomial data (Eq. (16)) 
parameters of grid adaptive algorithms (Eq. (39)) 
pressure 
time 
velocity components in X, Y, Z directions 
variable of the linear wave equation (Eq. (1 j) 

and Burgers equation (61) 
vector of conserved variables for Euler 

equation (Eq. (3)) 
rectangular Cartesian coordinates 
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Greek Symbols 
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P 
CD 

distribution weightings for CD (Eqs. ( 1 1 )-( 14)) 
change of U in time At (Eq. (9)) 
time increment 
cell length (X,, I -A’,) 
reference cell length 
change of Ci in distance AX (E,q. (17)) 
compatibility constants (Eqs. (46 1 and (53)) 
CFL number 
density 
insrease of U in cell in time At (Eq. ( 10)) 
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